

Serverless Overview

What's serverless?

- Serverless is a new paradigm in which the developers don't have to manage servers anymore...
- They just deploy code
- They just deploy... functions !
- Initially... Serverless == FaaS (Function as a Service)
- Serverless was pioneered by AWS Lambda but now also includes anything that's managed: "databases, messaging, storage, etc."
- Serverless does not mean there are no servers... it means you just don't manage / provision / see them

Serverless in AWS

- AWS Lambda
- DynamoDB
- AWS Cognito
- AWS API Gateway
- Amazon S3
- AWS SNS & SQS
- AWS Kinesis Data Firehose
- Aurora Serverless
- Step Functions
- Fargate

Why AWS Lambda

Amazon EC2

- Virtual Servers in the Cloud
- Limited by RAM and CPU
- Continuously running
- Scaling means intervention to add / remove servers

\mathbb{Z}

Amazon Lambda

- Virtual functions no servers to manage!
- Limited by time short executions
- Run on-demand
- Scaling is automated!

AWS Lambda language support

- Node.js (JavaScript)
- Python
- Java (Java 8 compatible)
- C# (.NET Core)
- Golang
- C# / Powershell
- Ruby
- Custom Runtime API (community supported, example Rust)
- Lambda Container Image
 - The container image must implement the Lambda Runtime API
 - ECS / Fargate is preferred for running arbitrary Docker images

AWS Lambda Integrations Main ones

Example: Serverless Thumbnail creation

Example: Serverless CRON Job

CloudWatch Events EventBridge

AWS Lambda Function Perform a task

AWS Lambda Pricing: example

- You can find overall pricing information here: https://aws.amazon.com/lambda/pricing/
- Pay per **calls**:
 - First 1,000,000 requests are free
 - \$0.20 per I million requests thereafter (\$0.000002 per request)
- Pay per duration: (in increment of I ms)
 - 400,000 GB-seconds of compute time per month for FREE
 - == 400,000 seconds if function is IGB RAM
 - == 3,200,000 seconds if function is 128 MB RAM
 - After that \$1.00 for 600,000 GB-seconds
- It is usually very cheap to run AWS Lambda so it's very popular

AWS Lambda Limits to Know - per region

• Execution:

- Memory allocation: 128 MB 10GB (1 MB increments)
- Maximum execution time: 900 seconds (15 minutes)
- Environment variables (4 KB)
- Disk capacity in the "function container" (in /tmp): 512 MB
- Concurrency executions: 1000 (can be increased)

• Deployment:

- Lambda function deployment size (compressed .zip): 50 MB
- Size of uncompressed deployment (code + dependencies): 250 MB
- Can use the /tmp directory to load other files at startup
- Size of environment variables: 4 KB

Lambda@Edge

- You have deployed a CDN using CloudFront
- What if you wanted to run a global AWS Lambda alongside?
- Or how to implement request filtering before reaching your application?
- For this, you can use Lambda@Edge: deploy Lambda functions alongside your CloudFront CDN
 - Build more responsive applications
 - You don't manage servers, Lambda is deployed globally
 - Customize the CDN content
 - Pay only for what you use

Lambda@Edge

- You can use Lambda to change CloudFront requests and responses:
 - After CloudFront receives a request from a viewer (viewer request)
 - Before CloudFront forwards the request to the origin (origin request)
 - After CloudFront receives the response from the origin (origin response)
 - Before CloudFront forwards the response to the viewer (viewer response)

• You can also generate responses to viewers without ever sending the request to the origin

Lambda@Edge: Global application

Lambda@Edge: Use Cases

- Website Security and Privacy
- Dynamic Web Application at the Edge
- Search Engine Optimization (SEO)
- Intelligently Route Across Origins and Data Centers
- Bot Mitigation at the Edge
- Real-time Image Transformation
- A/B Testing
- User Authentication and Authorization
- User Prioritization
- User Tracking and Analytics

Amazon DynamoDB

- Fully managed, highly available with replication across multiple AZs
- NoSQL database not a relational database
- Scales to massive workloads, distributed database
- Millions of requests per seconds, trillions of row, 100s of TB of storage
- Fast and consistent in performance (low latency on retrieval)
- Integrated with IAM for security, authorization and administration
- Enables event driven programming with DynamoDB Streams
- Low cost and auto-scaling capabilities
- Standard & Infrequent Access (IA) Table Class

DynamoDB - Basics

- DynamoDB is made of Tables
- Each table has a **Primary Key** (must be decided at creation time)
- Each table can have an infinite number of items (= rows)
- Each item has attributes (can be added over time can be null)
- Maximum size of an item is 400KB
- Data types supported are:
 - Scalar Types String, Number, Binary, Boolean, Null
 - Document Types List, Map
 - Set Types String Set, Number Set, Binary Set

DynamoDB – Table example

DynamoDB – Read/Write Capacity Modes

- Control how you manage your table's capacity (read/write throughput)
- Provisioned Mode (default)
 - You specify the number of reads/writes per second
 - You need to plan capacity beforehand
 - Pay for provisioned Read Capacity Units (RCU) & Write Capacity Units (WCU)
 - Possibility to add <u>auto-scaling</u> mode for RCU & WCU

On-Demand Mode

- Read/writes automatically scale up/down with your workloads
- No capacity planning needed
- Pay for what you use, more expensive (\$\$\$)
- Great for <u>unpredictable</u> workloads

DynamoDB Accelerator (DAX)

- Fully-managed, highly available, seamless inmemory cache for DynamoDB
- Help solve read congestion by caching
- Microseconds latency for cached data
- Doesn't require application logic modification (compatible with existing DynamoDB APIs)
- 5 minutes TTL for cache (default)

DynamoDB Accelerator (DAX) vs. ElastiCache

DynamoDB Streams

- Ordered stream of item-level modifications (create/update/delete) in a table
- Stream records can be:
 - Sent to Kinesis Data Streams
 - Read by AWS Lambda
 - Read by Kinesis Client Library applications
- Data Retention for up to 24 hours
- Use cases:
 - react to changes in real-time (welcome email to users)
 - Analytics
 - Insert into derivative tables
 - Insert into ElasticSearch
 - Implement cross-region replication

DynamoDB Streams

DynamoDB Global Tables

- Make a DynamoDB table accessible with **low latency** in multiple-regions
- Active-Active replication
- Applications can **READ** and **WRITE** to the table in any region
- Must enable DynamoDB Streams as a pre-requisite

DynamoDB – Time To Live (TTL)

- Automatically delete items after an expiry timestamp
- Use cases: reduce stored data by keeping only current items, adhere to regulatory obligations, ...

DynamoDB - Indexes

- Global Secondary Indexes (GSI) & Local Secondary Indexes (LSI)
- High level: allow to **query** on attributes other than the Primary Key

• With Indexes, we can query by Game ID, Game_TS, Score, Result, etc...

DynamoDB - Transactions

Example: Building a Serverless API

AWS API Gateway

- AWS Lambda + API Gateway: No infrastructure to manage
- Support for the WebSocket Protocol
- Handle API versioning (v1, v2...)
- Handle different environments (dev, test, prod...)
- Handle security (Authentication and Authorization)
- Create API keys, handle request throttling
- Swagger / Open API import to quickly define APIs
- Transform and validate requests and responses
- Generate SDK and API specifications
- Cache API responses

API Gateway – Integrations High Level

• Lambda Function

- Invoke Lambda function
- Easy way to expose REST API backed by AWS Lambda

• HTTP

- Expose HTTP endpoints in the backend
- Example: internal HTTP API on premise, Application Load Balancer...
- Why? Add rate limiting, caching, user authentications, API keys, etc...

• AWS Service

- Expose any AWS API through the API Gateway?
- Example: start an AWS Step Function workflow, post a message to SQS
- Why? Add authentication, deploy publicly, rate control...

API Gateway - Endpoint Types

- Edge-Optimized (default): For global clients
 - Requests are routed through the CloudFront Edge locations (improves latency)
 - he API Gateway still lives in only one region
- Regional:
 - For clients within the same region
 - Could manually combine with CloudFront (more control over the caching strategies and the distribution)
- Private:
 - Can only be accessed from your VPC using an interface VPC endpoint (ENI)
 - Use a resource policy to define access

API Gateway – Security IAM Permissions

- Create an IAM policy authorization and attach to User / Role
- API Gateway verifies IAM permissions passed by the calling application
- Good to provide access within your own infrastructure
- Leverages "Sig v4" capability where IAM credential are in headers

API Gateway – Security Lambda Authorizer (formerly Custom Authorizers)

- Uses AWS Lambda to validate the token in header being passed
- Option to cache result of authentication
- Helps to use OAuth / SAML / 3rd party type of authentication
- Lambda must return an IAM policy for the user

API Gateway – Security Cognito User Pools

- Cognito fully manages user lifecycle
- API gateway verifies identity automatically from AWS Cognito
- No custom implementation required
- Cognito only helps with authentication, not authorization

API Gateway – Security – Summary

• IAM:

- Great for users / roles already within your AWS account
- Handle authentication + authorization
- Leverages Sig v4

• Custom Authorizer:

- Great for 3rd party tokens
- Very flexible in terms of what IAM policy is returned
- Handle Authentication + Authorization
- Pay per Lambda invocation

• Cognito User Pool:

- You manage your own user pool (can be backed by Facebook, Google login etc...)
- No need to write any custom code
- Must implement authorization in the backend

AWS Cognito

- We want to give our users an identity so that they can interact with our application.
- Cognito User Pools:
 - Sign in functionality for app users
 - Integrate with API Gateway
- Cognito Identity Pools (Federated Identity):
 - Provide AWS credentials to users so they can access AWS resources directly
 - Integrate with Cognito User Pools as an identity provider
- Cognito Sync:
 - Synchronize data from device to Cognito.
 - May be deprecated and replaced by AppSync

AWS Cognito User Pools (CUP)

- Create a serverless database of user for your mobile apps
- Simple login: Username (or email) / password combination
- Possibility to verify emails / phone numbers and add MFA
- Can enable Federated Identities (Facebook, Google, SAML...)
- Sends back a JSON Web Tokens (JWT)
- Can be integrated with API Gateway for authentication

AWS Cognito – Federated Identity Pools

- Goal:
 - Provide direct access to AWS Resources from the Client Side
- How:
 - Log in to federated identity provider or remain anonymous
 - Get temporary AWS credentials back from
 - the Federated Identity Pool
 - These credentials come with a predefined
 - IAM policy stating their permissions
- Example:
 - provide (temporary) access to write to S3
 - bucket using Facebook Login

AWS Cognito Sync

- Deprecated use AWS AppSync now
- Store preferences, configuration, state of app
- Cross device synchronization (any platform iOS, Android, etc...)
- Offline capability (synchronization when back online)
- Requires Federated Identity Pool in Cognito (not User Pool)
- Store data in datasets (up to 1MB)
- Up to 20 datasets to synchronise

AWS SAM - Serverless Application Model

• SAM = Serverless Application Model

- Framework for developing and deploying serverless applications
- All the configuration is YAML code
 - Lambda Functions
 - DynamoDB tables
 - API Gateway
 - Cognito User Pools
- SAM can help you to run Lambda, API Gateway, DynamoDB locally
- SAM can use CodeDeploy to deploy Lambda functions

AWS CloudFront

AWS CloudFront

- Content Delivery Network (CDN)
- Improves read performance, content is cached at the edge
- 216 Point of Presence globally (edge locations)
- DDoS protection, integration with Shield, AWS Web Application Firewall
- Can expose external HTTPS and can talk to internal HTTPS backends

Source: https://aws.amazon.com/cloudfront/features/?nc=sn&loc=2

CloudFront – Origins

• S3 bucket

- For distributing files and caching them at the edge
- Enhanced security with CloudFront Origin Access Identity (OAI)
- CloudFront can be used as an ingress (to upload files to S3)

• Custom Origin (HTTP)

- Application Load Balancer
- EC2 instance
- S3 website (must first enable the bucket as a static S3 website)
- Any HTTP backend you want

CloudFront at a high level

CloudFront – S3 as an Origin

CloudFront – ALB or EC2 as an origin

CloudFront Geo Restriction

- You can restrict who can access your distribution
 - Whitelist: Allow your users to access your content only if they're in one of the countries on a list of approved countries.
 - **Blacklist:** Prevent your users from accessing your content if they're in one of the countries on a blacklist of banned countries.

- The "country" is determined using a 3rd party Geo-IP database
- Use case: Copyright Laws to control access to content

CloudFront vs S3 Cross Region Replication

- CloudFront:
 - Global Edge network
 - Files are cached for a TTL (maybe a day)
 - Great for static content that must be available everywhere
- S3 Cross Region Replication:
 - Must be setup for each region you want replication to happen
 - Files are updated in near real-time
 - Read only
 - Great for dynamic content that needs to be available at low-latency in few regions

AWS CloudFront Hands On

- We'll create an S3 bucket
- We'll create a CloudFront distribution
- We'll create an Origin Access Identity
- We'll limit the S3 bucket to be accessed only using this identity

CloudFront Signed URL / Signed Cookies

• You want to distribute paid shared content to premium users over the world

- We can use CloudFront Signed URL / Cookie. We attach a policy with:
 - Includes URL expiration
 - Includes IP ranges to access the data from
 - Trusted signers (which AWS accounts can create signed URLs)
- How long should the URL be valid for?
 - Shared content (movie, music): make it short (a few minutes)
 - Private content (private to the user): you can make it last for years
- Signed URL = access to individual files (one signed URL per file)
- Signed Cookies = access to multiple files (one signed cookie for many files)

CloudFront Signed URL Diagram

CloudFront Signed URL vs S3 Pre-Signed URL

- CloudFront Signed URL:
 - Allow access to a path, no matter the origin
 - Account wide key-pair, only the root can manage it
 - Can filter by IP, path, date, expiration
 - Can leverage caching features

- S3 Pre-Signed URL:
 - Issue a request as the person who pre-signed the URL
 - Uses the IAM key of the signing IAM principal
 - Limited lifetime

CloudFront - Pricing

- CloudFront Edge locations are all around the world
- The cost of data out per edge location varies

Per M	U	nited States, Mexico, & I Canada	Europe & Israel	South Africa, Kenya, & Middle East	South America	Japan	Australia & New Zealand	Philippines, Singapore, South Korea, Taiwan, & Thailand	India
First	ЮТВ	\$0.085	\$0.085	\$0.110	\$0.110	\$0.114	\$0.114	\$0.140	\$0.170
Next	40TB	\$0.080	\$0.080	\$0.105	\$0.105	\$0.089	\$0.098	\$0.135	\$0.130
Next 1	ООТВ	\$0.060	\$0.060	\$0.090	\$0.090	\$0.086	\$0.094	\$0.120	\$0.110
Next 3	50TB	\$0.040	\$0.040	\$0.080	\$0.080	\$0.084	\$0.092	\$0.100	\$0.100
Next 5	24TB	\$0.030	\$0.030	\$0.060	\$0.060	\$0.080	\$0.090	\$0.080	\$0.100
Next	4PB	\$0.025	\$0.025	\$0.050	\$0.050	\$0.070	\$0.085	\$0.070	\$0.100
Over	5PB	\$0.020	\$0.020	\$0.040	\$0.040	\$0.060	\$0.080	\$0.060	\$0.100

Hann Kana

lower

CloudFront – Price Classes

- You can reduce the number of edge locations for cost reduction
- Three price classes:
 - 1. Price Class All: all regions best performance
 - 2. Price Class 200: most regions, but excludes the most expensive regions
 - 3. Price Class 100: only the least expensive regions

Edge Locations Included Within	United States, Mexico, & Canada	Europe & Israel	South Africa, Kenya, & Middle East	South America	Japan	Australia & New Zealand	Hong Kong, Philippines, Singapore, South Korea, Taiwan, & Thailand	India
Price Class All	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Price Class 200	Yes	Yes	Yes	x	Yes	x	Yes	Yes
Price Class 100	Yes	Yes	x	x	x	x	x	x

CloudFront – Multiple Origin

- To route to different kind of origins based on the content type
- Based on path pattern:
 - /images/*
 - /api/*
 - /*

CloudFront – Origin Groups

- To increase high-availability and do failover
- Origin Group: one primary and one secondary origin
- If the primary origin fails, the second one is used

S3 + CloudFront - Region-level High Availability

CloudFront – Field Level Encryption

- Protect user sensitive information through application stack
- Adds an additional layer of security along with HTTPS
- Sensitive information encrypted at the edge close to user
- Uses asymmetric encryption
- Usage:
 - Specify set of fields in POST requests that you want to be encrypted (up to 10 fields)
 - Specify the public key to encrypt them

Global users for our application

- You have deployed an application and have global users who want to access it directly.
- They go over the public internet, which can add a lot of latency due to many hops
- We wish to go as fast as possible through AWS network to minimize latency

Unicast IP vs Anycast IP

• Unicast IP: one server holds one IP address

AWS Global Accelerator

- Leverage the AWS internal network to route to your application
- **2 Anycast IP** are created for your application
- The Anycast IP send traffic directly to Edge Locations
- The Edge locations send the traffic to your application

AWS Global Accelerator

- Works with Elastic IP, EC2 instances, ALB, NLB, public or private
- Consistent Performance
 - Intelligent routing to lowest latency and fast regional failover
 - No issue with client cache (because the IP doesn't change)
 - Internal AWS network
- Health Checks
 - Global Accelerator performs a health check of your applications
 - Helps make your application global (failover less than 1 minute for unhealthy)
 - Great for disaster recovery (thanks to the health checks)
- Security
 - only 2 external IP need to be whitelisted
 - DDoS protection thanks to AWS Shield

AWS Global Accelerator vs CloudFront

- They both use the AWS global network and its edge locations around the world
- Both services integrate with AWS Shield for DDoS protection.

• CloudFront

- Improves performance for both cacheable content (such as images and videos)
- Dynamic content (such as API acceleration and dynamic site delivery)
- Content is served at the edge

Global Accelerator

- Improves performance for a wide range of applications over TCP or UDP
- Proxying packets at the edge to applications running in one or more AWS Regions.
- Good fit for non-HTTP use cases, such as gaming (UDP), IoT (MQTT), or Voice over IP
- Good for HTTP use cases that require static IP addresses
- Good for HTTP use cases that required deterministic, fast regional failover

