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Serverless Overview



What’s serverless?

• Serverless is a new paradigm in which the developers don’t have to manage 
servers anymore…

• They just deploy code
• They just deploy… functions !
• Initially... Serverless == FaaS (Function as a Service)
• Serverless was pioneered by AWS Lambda but now also includes anything that’s 

managed: “databases, messaging, storage, etc.”
• Serverless does not mean there are no servers… it means you just don’t manage 

/ provision / see them



Serverless in AWS

• AWS Lambda

• DynamoDB

• AWS Cognito

• AWS API Gateway

• Amazon S3

• AWS SNS & SQS

• AWS Kinesis Data Firehose

• Aurora Serverless

• Step Functions

• Fargate



Why AWS Lambda



AWS Lambda language support

• Node.js (JavaScript)

• Python

• Java (Java 8 compatible)

• C# (.NET Core)

• Golang

• C# / Powershell

• Ruby

• Custom Runtime API (community supported, example Rust)

• Lambda Container Image
• The container image must implement the Lambda Runtime API
• ECS / Fargate is preferred for running arbitrary Docker images



AWS Lambda Integrations
Main ones



Example: Serverless Thumbnail creation



Example: Serverless CRON Job



AWS Lambda Pricing: example



AWS Lambda Limits to Know - per region



Lambda@Edge



Lambda@Edge

• You can also generate responses to viewers without ever sending the request to the 
origin

• You can use Lambda to change CloudFront requests and responses:
• After CloudFront receives a request from a viewer (viewer request)
• Before CloudFront forwards the request to the origin (origin request)
• After CloudFront receives the response from the origin (origin response)
• Before CloudFront forwards the response to the viewer (viewer response)



Lambda@Edge: Global application



Lambda@Edge: Use Cases

• Website Security and Privacy

• Dynamic Web Application at the Edge

• Search Engine Optimization (SEO)

• Intelligently Route Across Origins and Data Centers

• Bot Mitigation at the Edge

• Real-time Image Transformation

• A/B Testing

• User Authentication and Authorization

• User Prioritization

• User Tracking and Analytics



Amazon DynamoDB

• Fully managed, highly available with replication across multiple AZs

• NoSQL database - not a relational database

• Scales to massive workloads, distributed database

• Millions of requests per seconds, trillions of row, 100s of TB of storage

• Fast and consistent in performance (low latency on retrieval)

• Integrated with IAM for security, authorization and administration

• Enables event driven programming with DynamoDB Streams

• Low cost and auto-scaling capabilities

• Standard & Infrequent Access (IA) Table Class



DynamoDB - Basics

• DynamoDB is made of Tables

• Each table has a Primary Key (must be decided at creation time)

• Each table can have an infinite number of items (= rows)

• Each item has attributes (can be added over time – can be null)

• Maximum size of an item is 400KB

• Data types supported are:

• Scalar Types – String, Number, Binary, Boolean, Null

• Document Types – List, Map

• Set Types – String Set, Number Set, Binary Set



DynamoDB – Table example



DynamoDB – Read/Write Capacity Modes



DynamoDB Accelerator (DAX)

• Fully-managed, highly available, seamless in-
memory cache for DynamoDB

• Help solve read congestion by caching

• Microseconds latency for cached data

• Doesn’t require application logic modification

(compatible with existing DynamoDB APIs)

• 5 minutes TTL for cache (default)



DynamoDB Accelerator (DAX) vs. ElastiCache



DynamoDB Streams

• Ordered stream of item-level modifications (create/update/delete) in a table

• Stream records can be:

• Sent to Kinesis Data Streams
• Read by AWS Lambda
• Read by Kinesis Client Library applications

• Data Retention for up to 24 hours

• Use cases:

• react to changes in real-time (welcome email to users)
• Analytics
• Insert into derivative tables
• Insert into ElasticSearch
• Implement cross-region replication



DynamoDB Streams



DynamoDB Global Tables

• Make a DynamoDB table accessible with low latency in multiple-regions

• Active-Active replication

• Applications can READ and WRITE to the table in any region

• Must enable DynamoDB Streams as a pre-requisite



DynamoDB – Time To Live (TTL)

• Automatically delete items after an 
expiry timestamp

• Use cases: reduce stored data by keeping 
only current items, adhere to regulatory 
obligations, …



DynamoDB - Indexes
• Global Secondary Indexes (GSI) & Local Secondary Indexes (LSI)
• High level: allow to query on attributes other than the Primary Key

• With Indexes, we can query by Game ID, Game_TS, Score, Result, etc…



DynamoDB - Transactions



Example: Building a Serverless API



AWS API Gateway

• AWS Lambda + API Gateway: No infrastructure to manage

• Support for the WebSocket Protocol

• Handle API versioning (v1, v2…)

• Handle different environments (dev, test, prod…)

• Handle security (Authentication and Authorization)

• Create API keys, handle request throttling

• Swagger / Open API import to quickly define APIs

• Transform and validate requests and responses

• Generate SDK and API specifications

• Cache API responses



API Gateway – Integrations High Level

• Lambda Function
• Invoke Lambda function
• Easy way to expose REST API backed by AWS Lambda

• HTTP
• Expose HTTP endpoints in the backend
• Example: internal HTTP API on premise, Application Load Balancer…
• Why? Add rate limiting, caching, user authentications, API keys, etc…

• AWS Service
• Expose any AWS API through the API Gateway?
• Example: start an AWS Step Function workflow, post a message to SQS
• Why? Add authentication, deploy publicly, rate control…



API Gateway - Endpoint Types

• Edge-Optimized (default): For global clients
• Requests are routed through the CloudFront Edge locations (improves 

latency)
• he API Gateway still lives in only one region

• Regional:
• For clients within the same region
• Could manually combine with CloudFront (more control over the caching 

strategies and the distribution)

• Private:
• Can only be accessed from your VPC using an interface VPC endpoint (ENI)
• Use a resource policy to define access



API Gateway – Security

IAM Permissions

• Create an IAM policy authorization and attach to User / Role

• API Gateway verifies IAM permissions passed by the calling application

• Good to provide access within your own infrastructure

• Leverages “Sig v4” capability where IAM credential are in headers



API Gateway – Security
Lambda Authorizer (formerly Custom Authorizers)

• Uses AWS Lambda to validate the token in header being passed

• Option to cache result of authentication

• Helps to use OAuth / SAML / 3rd party type of authentication

• Lambda must return an IAM policy for the user



API Gateway – Security
Cognito User Pools

• Cognito fully manages user lifecycle

• API gateway verifies identity automatically from AWS Cognito

• No custom implementation required

• Cognito only helps with authentication, not authorization



API Gateway – Security – Summary

• IAM:
• Great for users / roles already within your AWS account
• Handle authentication + authorization
• Leverages Sig v4

• Custom Authorizer:
• Great for 3rd party tokens
• Very flexible in terms of what IAM policy is returned
• Handle Authentication + Authorization
• Pay per Lambda invocation

• Cognito User Pool:
• You manage your own user pool (can be backed by Facebook, Google login etc…)
• No need to write any custom code
• Must implement authorization in the backend



AWS Cognito

• We want to give our users an identity so that they can interact with our 
application.

• Cognito User Pools:
• Sign in functionality for app users
• Integrate with API Gateway

• Cognito Identity Pools (Federated Identity):
• Provide AWS credentials to users so they can access AWS resources 

directly
• Integrate with Cognito User Pools as an identity provider

• Cognito Sync:
• Synchronize data from device to Cognito.
• May be deprecated and replaced by AppSync



AWS Cognito User Pools (CUP)

• Create a serverless database of user for your mobile apps

• Simple login: Username (or email) / password combination

• Possibility to verify emails / phone numbers and add MFA

• Can enable Federated Identities (Facebook, Google, SAML…)

• Sends back a JSON Web Tokens (JWT)

• Can be integrated with API Gateway for authentication



AWS Cognito – Federated Identity Pools

• Goal:
• Provide direct access to AWS 

Resources from the Client Side

• How:
• Log in to federated identity provider –

or remain anonymous
• Get temporary AWS credentials back 

from
• the Federated Identity Pool
• These credentials come with a pre-

defined
• IAM policy stating their permissions

• Example:
• provide (temporary) access to write to 

S3
• bucket using Facebook Login



AWS Cognito Sync

• Deprecated – use AWS AppSync now

• Store preferences, configuration, state of app

• Cross device synchronization (any platform – iOS, Android, etc…)

• Offline capability (synchronization when back online)

• Requires Federated Identity Pool in Cognito (not User Pool)

• Store data in datasets (up to 1MB)

• Up to 20 datasets to synchronise



AWS SAM - Serverless Application Model

• SAM = Serverless Application Model

• Framework for developing and deploying serverless applications

• All the configuration is YAML code

• Lambda Functions

• DynamoDB tables

• API Gateway

• Cognito User Pools

• SAM can help you to run Lambda, API Gateway, DynamoDB locally

• SAM can use CodeDeploy to deploy Lambda functions



AWS CloudFront



AWS CloudFront

Source: https://aws.amazon.com/cloudfront/features/?nc=sn&loc=2

• Content Delivery Network (CDN)

• Improves read performance, content is 
cached at the edge

• 216 Point of Presence globally (edge 
locations)

• DDoS protection, integration with 
Shield, AWS Web Application Firewall

• Can expose external HTTPS and can 
talk to internal HTTPS backends



CloudFront – Origins

• S3 bucket

• For distributing files and caching them at the edge

• Enhanced security with CloudFront Origin Access Identity (OAI)

• CloudFront can be used as an ingress (to upload files to S3)

• Custom Origin (HTTP)

• Application Load Balancer

• EC2 instance

• S3 website (must first enable the bucket as a static S3 website)

• Any HTTP backend you want



CloudFront at a high level



CloudFront – S3 as an Origin



CloudFront – ALB or EC2 as an origin



CloudFront Geo Restriction

• You can restrict who can access your distribution
• Whitelist: Allow your users to access your content only if they're in one 

of the countries on a list of approved countries.

• Blacklist: Prevent your users from accessing your content if they're in one 
of the countries on a blacklist of banned countries.

• The “country” is determined using a 3rd party Geo-IP database

• Use case: Copyright Laws to control access to content



CloudFront vs S3 Cross Region Replication

• CloudFront:
• Global Edge network
• Files are cached for a TTL (maybe a day)
• Great for static content that must be available everywhere

• S3 Cross Region Replication:
• Must be setup for each region you want replication to happen
• Files are updated in near real-time
• Read only
• Great for dynamic content that needs to be available at low-latency in few 
regions



AWS CloudFront Hands On

• We’ll create an S3 bucket

• We’ll create a CloudFront distribution

• We’ll create an Origin Access Identity

• We’ll limit the S3 bucket to be accessed only using this identity



CloudFront Signed URL / Signed Cookies



CloudFront Signed URL Diagram



CloudFront Signed URL vs S3 Pre-Signed URL



CloudFront - Pricing

• CloudFront Edge locations are all around the world
• The cost of data out per edge location varies



CloudFront – Price Classes

• You can reduce the number of edge locations for cost reduction
• Three price classes:

1. Price Class All: all regions – best performance
2. Price Class 200: most regions, but excludes the most expensive regions
3. Price Class 100: only the least expensive regions





CloudFront – Multiple Origin



CloudFront – Origin Groups

• To increase high-availability and do failover
• Origin Group: one primary and one secondary origin
• If the primary origin fails, the second one is used



CloudFront – Field Level Encryption
• Protect user sensitive information through application stack
• Adds an additional layer of security along with HTTPS
• Sensitive information encrypted at the edge close to user
• Uses asymmetric encryption
• Usage:

• Specify set of fields in POST requests that you want to be encrypted (up to 10 
fields)

• Specify the public key to encrypt them



Global users for our application

• You have deployed an application 
and have global users who want to 
access it directly.

• They go over the public internet, 
which can add a lot of latency due 
to many hops

• We wish to go as fast as possible 
through AWS network to minimize 
latency



Unicast IP vs Anycast IP

• Unicast IP: one server holds one IP address

• Anycast IP: all servers hold the same IP address and 
the client is routed to the nearest one



AWS Global Accelerator

• Leverage the AWS internal network to 
route to your application

• 2 Anycast IP are created for your 
application

• The Anycast IP send traffic directly to Edge 
Locations

• The Edge locations send the traffic to your 
application



AWS Global Accelerator

• Works with Elastic IP, EC2 instances, ALB, NLB, public or private
• Consistent Performance

• Intelligent routing to lowest latency and fast regional failover
• No issue with client cache (because the IP doesn’t change)
• Internal AWS network

• Health Checks
• Global Accelerator performs a health check of your applications
• Helps make your application global (failover less than 1 minute for unhealthy)
• Great for disaster recovery (thanks to the health checks)

• Security
• only 2 external IP need to be whitelisted
• DDoS protection thanks to AWS Shield



AWS Global Accelerator vs CloudFront

• They both use the AWS global network and its edge locations around the world
• Both services integrate with AWS Shield for DDoS protection.

• CloudFront
• Improves performance for both cacheable content (such as images and videos)
• Dynamic content (such as API acceleration and dynamic site delivery)
• Content is served at the edge

• Global Accelerator
• Improves performance for a wide range of applications over TCP or UDP
• Proxying packets at the edge to applications running in one or more AWS Regions.
• Good fit for non-HTTP use cases, such as gaming (UDP), IoT (MQTT), or Voice over IP
• Good for HTTP use cases that require static IP addresses
• Good for HTTP use cases that required deterministic, fast regional failover
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