
AWS



Serverless Overview



What’s serverless?

• Serverless is a new paradigm in which the developers don’t have to manage 
servers anymore…

• They just deploy code
• They just deploy… functions !
• Initially... Serverless == FaaS (Function as a Service)
• Serverless was pioneered by AWS Lambda but now also includes anything that’s 

managed: “databases, messaging, storage, etc.”
• Serverless does not mean there are no servers… it means you just don’t manage 

/ provision / see them



Serverless in AWS

• AWS Lambda

• DynamoDB

• AWS Cognito

• AWS API Gateway

• Amazon S3

• AWS SNS & SQS

• AWS Kinesis Data Firehose

• Aurora Serverless

• Step Functions

• Fargate



Why AWS Lambda



AWS Lambda language support

• Node.js (JavaScript)

• Python

• Java (Java 8 compatible)

• C# (.NET Core)

• Golang

• C# / Powershell

• Ruby

• Custom Runtime API (community supported, example Rust)

• Lambda Container Image
• The container image must implement the Lambda Runtime API
• ECS / Fargate is preferred for running arbitrary Docker images



AWS Lambda Integrations
Main ones



Example: Serverless Thumbnail creation



Example: Serverless CRON Job



AWS Lambda Pricing: example



AWS Lambda Limits to Know - per region



Lambda@Edge



Lambda@Edge

• You can also generate responses to viewers without ever sending the request to the 
origin

• You can use Lambda to change CloudFront requests and responses:
• After CloudFront receives a request from a viewer (viewer request)
• Before CloudFront forwards the request to the origin (origin request)
• After CloudFront receives the response from the origin (origin response)
• Before CloudFront forwards the response to the viewer (viewer response)



Lambda@Edge: Global application



Lambda@Edge: Use Cases

• Website Security and Privacy

• Dynamic Web Application at the Edge

• Search Engine Optimization (SEO)

• Intelligently Route Across Origins and Data Centers

• Bot Mitigation at the Edge

• Real-time Image Transformation

• A/B Testing

• User Authentication and Authorization

• User Prioritization

• User Tracking and Analytics



Amazon DynamoDB

• Fully managed, highly available with replication across multiple AZs

• NoSQL database - not a relational database

• Scales to massive workloads, distributed database

• Millions of requests per seconds, trillions of row, 100s of TB of storage

• Fast and consistent in performance (low latency on retrieval)

• Integrated with IAM for security, authorization and administration

• Enables event driven programming with DynamoDB Streams

• Low cost and auto-scaling capabilities

• Standard & Infrequent Access (IA) Table Class



DynamoDB - Basics

• DynamoDB is made of Tables

• Each table has a Primary Key (must be decided at creation time)

• Each table can have an infinite number of items (= rows)

• Each item has attributes (can be added over time – can be null)

• Maximum size of an item is 400KB

• Data types supported are:

• Scalar Types – String, Number, Binary, Boolean, Null

• Document Types – List, Map

• Set Types – String Set, Number Set, Binary Set



DynamoDB – Table example



DynamoDB – Read/Write Capacity Modes



DynamoDB Accelerator (DAX)

• Fully-managed, highly available, seamless in-
memory cache for DynamoDB

• Help solve read congestion by caching

• Microseconds latency for cached data

• Doesn’t require application logic modification

(compatible with existing DynamoDB APIs)

• 5 minutes TTL for cache (default)



DynamoDB Accelerator (DAX) vs. ElastiCache



DynamoDB Streams

• Ordered stream of item-level modifications (create/update/delete) in a table

• Stream records can be:

• Sent to Kinesis Data Streams
• Read by AWS Lambda
• Read by Kinesis Client Library applications

• Data Retention for up to 24 hours

• Use cases:

• react to changes in real-time (welcome email to users)
• Analytics
• Insert into derivative tables
• Insert into ElasticSearch
• Implement cross-region replication



DynamoDB Streams



DynamoDB Global Tables

• Make a DynamoDB table accessible with low latency in multiple-regions

• Active-Active replication

• Applications can READ and WRITE to the table in any region

• Must enable DynamoDB Streams as a pre-requisite



DynamoDB – Time To Live (TTL)

• Automatically delete items after an 
expiry timestamp

• Use cases: reduce stored data by keeping 
only current items, adhere to regulatory 
obligations, …



DynamoDB - Indexes
• Global Secondary Indexes (GSI) & Local Secondary Indexes (LSI)
• High level: allow to query on attributes other than the Primary Key

• With Indexes, we can query by Game ID, Game_TS, Score, Result, etc…



DynamoDB - Transactions



Example: Building a Serverless API



AWS API Gateway

• AWS Lambda + API Gateway: No infrastructure to manage

• Support for the WebSocket Protocol

• Handle API versioning (v1, v2…)

• Handle different environments (dev, test, prod…)

• Handle security (Authentication and Authorization)

• Create API keys, handle request throttling

• Swagger / Open API import to quickly define APIs

• Transform and validate requests and responses

• Generate SDK and API specifications

• Cache API responses



API Gateway – Integrations High Level

• Lambda Function
• Invoke Lambda function
• Easy way to expose REST API backed by AWS Lambda

• HTTP
• Expose HTTP endpoints in the backend
• Example: internal HTTP API on premise, Application Load Balancer…
• Why? Add rate limiting, caching, user authentications, API keys, etc…

• AWS Service
• Expose any AWS API through the API Gateway?
• Example: start an AWS Step Function workflow, post a message to SQS
• Why? Add authentication, deploy publicly, rate control…



API Gateway - Endpoint Types

• Edge-Optimized (default): For global clients
• Requests are routed through the CloudFront Edge locations (improves 

latency)
• he API Gateway still lives in only one region

• Regional:
• For clients within the same region
• Could manually combine with CloudFront (more control over the caching 

strategies and the distribution)

• Private:
• Can only be accessed from your VPC using an interface VPC endpoint (ENI)
• Use a resource policy to define access



API Gateway – Security

IAM Permissions

• Create an IAM policy authorization and attach to User / Role

• API Gateway verifies IAM permissions passed by the calling application

• Good to provide access within your own infrastructure

• Leverages “Sig v4” capability where IAM credential are in headers



API Gateway – Security
Lambda Authorizer (formerly Custom Authorizers)

• Uses AWS Lambda to validate the token in header being passed

• Option to cache result of authentication

• Helps to use OAuth / SAML / 3rd party type of authentication

• Lambda must return an IAM policy for the user



API Gateway – Security
Cognito User Pools

• Cognito fully manages user lifecycle

• API gateway verifies identity automatically from AWS Cognito

• No custom implementation required

• Cognito only helps with authentication, not authorization



API Gateway – Security – Summary

• IAM:
• Great for users / roles already within your AWS account
• Handle authentication + authorization
• Leverages Sig v4

• Custom Authorizer:
• Great for 3rd party tokens
• Very flexible in terms of what IAM policy is returned
• Handle Authentication + Authorization
• Pay per Lambda invocation

• Cognito User Pool:
• You manage your own user pool (can be backed by Facebook, Google login etc…)
• No need to write any custom code
• Must implement authorization in the backend



AWS Cognito

• We want to give our users an identity so that they can interact with our 
application.

• Cognito User Pools:
• Sign in functionality for app users
• Integrate with API Gateway

• Cognito Identity Pools (Federated Identity):
• Provide AWS credentials to users so they can access AWS resources 

directly
• Integrate with Cognito User Pools as an identity provider

• Cognito Sync:
• Synchronize data from device to Cognito.
• May be deprecated and replaced by AppSync



AWS Cognito User Pools (CUP)

• Create a serverless database of user for your mobile apps

• Simple login: Username (or email) / password combination

• Possibility to verify emails / phone numbers and add MFA

• Can enable Federated Identities (Facebook, Google, SAML…)

• Sends back a JSON Web Tokens (JWT)

• Can be integrated with API Gateway for authentication



AWS Cognito – Federated Identity Pools

• Goal:
• Provide direct access to AWS 

Resources from the Client Side

• How:
• Log in to federated identity provider –

or remain anonymous
• Get temporary AWS credentials back 

from
• the Federated Identity Pool
• These credentials come with a pre-

defined
• IAM policy stating their permissions

• Example:
• provide (temporary) access to write to 

S3
• bucket using Facebook Login



AWS Cognito Sync

• Deprecated – use AWS AppSync now

• Store preferences, configuration, state of app

• Cross device synchronization (any platform – iOS, Android, etc…)

• Offline capability (synchronization when back online)

• Requires Federated Identity Pool in Cognito (not User Pool)

• Store data in datasets (up to 1MB)

• Up to 20 datasets to synchronise



AWS SAM - Serverless Application Model

• SAM = Serverless Application Model

• Framework for developing and deploying serverless applications

• All the configuration is YAML code

• Lambda Functions

• DynamoDB tables

• API Gateway

• Cognito User Pools

• SAM can help you to run Lambda, API Gateway, DynamoDB locally

• SAM can use CodeDeploy to deploy Lambda functions



AWS CloudFront



AWS CloudFront

Source: https://aws.amazon.com/cloudfront/features/?nc=sn&loc=2

• Content Delivery Network (CDN)

• Improves read performance, content is 
cached at the edge

• 216 Point of Presence globally (edge 
locations)

• DDoS protection, integration with 
Shield, AWS Web Application Firewall

• Can expose external HTTPS and can 
talk to internal HTTPS backends



CloudFront – Origins

• S3 bucket

• For distributing files and caching them at the edge

• Enhanced security with CloudFront Origin Access Identity (OAI)

• CloudFront can be used as an ingress (to upload files to S3)

• Custom Origin (HTTP)

• Application Load Balancer

• EC2 instance

• S3 website (must first enable the bucket as a static S3 website)

• Any HTTP backend you want



CloudFront at a high level



CloudFront – S3 as an Origin



CloudFront – ALB or EC2 as an origin



CloudFront Geo Restriction

• You can restrict who can access your distribution
• Whitelist: Allow your users to access your content only if they're in one 

of the countries on a list of approved countries.

• Blacklist: Prevent your users from accessing your content if they're in one 
of the countries on a blacklist of banned countries.

• The “country” is determined using a 3rd party Geo-IP database

• Use case: Copyright Laws to control access to content



CloudFront vs S3 Cross Region Replication

• CloudFront:
• Global Edge network
• Files are cached for a TTL (maybe a day)
• Great for static content that must be available everywhere

• S3 Cross Region Replication:
• Must be setup for each region you want replication to happen
• Files are updated in near real-time
• Read only
• Great for dynamic content that needs to be available at low-latency in few 
regions



AWS CloudFront Hands On

• We’ll create an S3 bucket

• We’ll create a CloudFront distribution

• We’ll create an Origin Access Identity

• We’ll limit the S3 bucket to be accessed only using this identity



CloudFront Signed URL / Signed Cookies



CloudFront Signed URL Diagram



CloudFront Signed URL vs S3 Pre-Signed URL



CloudFront - Pricing

• CloudFront Edge locations are all around the world
• The cost of data out per edge location varies



CloudFront – Price Classes

• You can reduce the number of edge locations for cost reduction
• Three price classes:

1. Price Class All: all regions – best performance
2. Price Class 200: most regions, but excludes the most expensive regions
3. Price Class 100: only the least expensive regions





CloudFront – Multiple Origin



CloudFront – Origin Groups

• To increase high-availability and do failover
• Origin Group: one primary and one secondary origin
• If the primary origin fails, the second one is used



CloudFront – Field Level Encryption
• Protect user sensitive information through application stack
• Adds an additional layer of security along with HTTPS
• Sensitive information encrypted at the edge close to user
• Uses asymmetric encryption
• Usage:

• Specify set of fields in POST requests that you want to be encrypted (up to 10 
fields)

• Specify the public key to encrypt them



Global users for our application

• You have deployed an application 
and have global users who want to 
access it directly.

• They go over the public internet, 
which can add a lot of latency due 
to many hops

• We wish to go as fast as possible 
through AWS network to minimize 
latency



Unicast IP vs Anycast IP

• Unicast IP: one server holds one IP address

• Anycast IP: all servers hold the same IP address and 
the client is routed to the nearest one



AWS Global Accelerator

• Leverage the AWS internal network to 
route to your application

• 2 Anycast IP are created for your 
application

• The Anycast IP send traffic directly to Edge 
Locations

• The Edge locations send the traffic to your 
application



AWS Global Accelerator

• Works with Elastic IP, EC2 instances, ALB, NLB, public or private
• Consistent Performance

• Intelligent routing to lowest latency and fast regional failover
• No issue with client cache (because the IP doesn’t change)
• Internal AWS network

• Health Checks
• Global Accelerator performs a health check of your applications
• Helps make your application global (failover less than 1 minute for unhealthy)
• Great for disaster recovery (thanks to the health checks)

• Security
• only 2 external IP need to be whitelisted
• DDoS protection thanks to AWS Shield



AWS Global Accelerator vs CloudFront

• They both use the AWS global network and its edge locations around the world
• Both services integrate with AWS Shield for DDoS protection.

• CloudFront
• Improves performance for both cacheable content (such as images and videos)
• Dynamic content (such as API acceleration and dynamic site delivery)
• Content is served at the edge

• Global Accelerator
• Improves performance for a wide range of applications over TCP or UDP
• Proxying packets at the edge to applications running in one or more AWS Regions.
• Good fit for non-HTTP use cases, such as gaming (UDP), IoT (MQTT), or Voice over IP
• Good for HTTP use cases that require static IP addresses
• Good for HTTP use cases that required deterministic, fast regional failover




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

